
 WAVEC

PROGRAMMING

IN A UNIX C

Applica
REST Corporation

THE WAVECREST DTS
/C++ ENVIRONMENT

tion Note No. 116

1

WAVECREST APPLICATIONS NOTE NUMBER 116 rev. 1.1

PROGRAMMING THE WAVECREST DTS-2070 IN A UNIX - C/C++ ENVIRONMENT

Introduction
The need to make timing measurements at 10pS accuracy and frequency
measurements of 1.0GHZ or less are very common in high performance IC test
applications. In response to customer demands, the WAVECREST Digital Time
Scope DTS2070 or DTS is used with many ATE Testers to make fast, accurate
timing measurements that ATE systems can not make; because of either a basic
accuracy or bandwidth (BW) limitations.

Most ATE Test systems are using UNIX - based workstations like the SUN in a
C/C++ environment with the NI-488.2M GPIB software driver with the NI interface.
This paper is for the Test Engineer to help write a test program to measure critical
timing parameters on I.C.’s; using the DTS with a ATE tester in a automated
environment via the GPIB bus. This application note explains how to :

1) Configure the GPIB device parameters in a NI-488 configuration file for the
GPIB software driver.

2) Include files that must be declared in order to perform the necessary function
calls of the GPIB software driver.

3) Initialize and setup the DTS with C/C++ software commands.
4) New quick easy to use setup and measurement macro commands for the DTS.

There are basic fundamental GPIB software commands a user must perform or the
controller/instrument will not communicate. This paper is formulated to provide the
essential software examples, so the Test Engineer will be successful in executing
program instructions over the GPIB.

ANSI/IEEE-488.2 standard
The ANSI/IEEE Standard 488.2 was released in 1987 with a common set of
commands that define protocol, error handling, status reporting, and data formats.
All ATE test systems have a GPIB/IEEE-488 bus available for interfacing to
instruments that adhere to these standards; whether the interface connects to the
SBus slots or the SCSI port.

The DTS2070 instrument conforms to the standards of IEEE-488.1 and IEEE-488.2
and will talk/listen to all ATE systems controllers compliant to these standards.

Configuration file
The configuration file defines essential GPIB device parameters that are
characteristic of the instrument. I emphasize the fact that without a configuration
file the controller/instrument may not communicate. The configuration parameters
include primary GPIB address, time-out settings, EOS byte, and bus timing; which
are personalized for that instrument. Therefore the file name "DTS207X" will
always be associated to the instrument. The configuration file usually resides at
/usr/bin or /dev/gpib.o for the UNIX - based workstations and can be configured by
the command ibconf. An example of the configuration file for the "DTS207X" is as
follows :

Board: gpib0
Primary gpib address00h
Secondary gpib addressnone
Timeout setting.....................................T10s
EOS byte ..no
Terminate read on EOSno
Set EOI with EOS on writeno

2

Type of compare on EOS 7-bit
Set EOI w/last byte of write.................. yes
Board is system controller.................... yes
Disable auto serial polling yes
High-speed timing................................ no
UNIX signal.. 2

Device: DTS207X Access: gpib0
Primary gpib address........................... 05H
Secondary gpib address none
Timeout setting T10s
EOS byte ... 00H
Terminate read on EOS....................... no
Set EOI with EOS on write................... no
Type of compare on EOS 7-bit
Set EOI w/last byte of write.................. yes

Other parameters :
Serial poll timeout 1s
Assert REN when SC no
Bus timing .. 500nS
Enable repeat address......................... no
Parallel poll .. default
Enable CIC protocol............................. no

The software module takes into account any special configuration
requirements for the instrument it controls and is layered between the GPIB
board (gpib.0) and NI-488.2M GPIB DRIVER as show in Diagram no. 1.

gpib.0

config

gpib.drv

 :
addr31

addr01
 :
addr05

DTS2070

Diagram No. 1

GPIB address
The GPIB has available both primary and secondary addresses. The DTS
has 32 selectable gpib addresses (1 - 32). Each instrument has its own
unique address and is specified in the configuration file. The example in
diagram no. 1 is address 05. Once the DTS address is selected; it is stored in
non-voltile memory during power off and remains at that address until it is
manually changed.

3

Include files
At the beginning of the DTS module are necessary include files that need to be
declared and are essential to execute the high level function calls of the gpib.drv. It
is important to use the proper syntax for the function calls such as ibrd or ibwrt;
but without the include file the call would be meaningless and the compiler would
detect an error warning. The include file is a preprocessor directive, so the compiler
can perform some preparatory work on the source code before compiling,

The include files are as follows :
#include <stdio.h>
#include <strings.h>
#include "cib.h" /* gpib ibxx function library for c */
#include "dts2070.h" /* special calls supplied by WAVE */

Others include files depending on system software :
#include <teradyne.h> /* custom ni driver j953 type testers */
#include "globals.h"
#include <sgtty.h>
#include "ni_gpib.h" /* custom ni driver for vista, duo, lt1101*/
#include <stdlib.h>
#include <mtbox.h>
#include "ugpib.h" /* custom ni driver se212 type testers */
#include "agile.h"
#include "ugpib.h" /* custom ni driver s9000 type testers */
#include "gpib.h" /* ni driver in C for sun OS, Solaris*/
static int dts_no;
static char rdbck[256];

Initialization Function
The DTS needs to be initialized only once at the beginning of the program. Without
the initialization and configuration the controller/instrument will not communicate.
The common commands at initialization are sent to the DTS by high level function
calls of the NI488.2 software driver (gpib.drv). The calls of ibrsp(serial poll
response), ibsta(command status), ibrd (read), ibwrt(write), ibtmo(time-out),
ibpad(primary address), ibsad(secondary address), ibeos(end of string), ibeot(eoi
on last byte), ibclr(clear bus) are all part of this driver(gpib.drv). The dts_initialize
function is essential to : call the config file "dts207X", communicate to GPIB
address 05, bring the instrument on line ibonl, clear the GPIB bus ibclr and status
registers, and allow a 3.0 Sec. delay for the clear to take affect. This dts_initialize
function works for all testers, so use the code structure as follows :

 void dts_initialize() {
 if ((dts_no = ibfind ("dts207X")) < 0)
 {
 printf (" GPIB initialization FAILED for BAD address or \n");
 printf (" GPIB cable connection or \n");
 ibonl (dts_no, 0); /* takes instrument off line = 0 */
 }
 else {
 ioctl (dts_no, IBGET, &device); /* optional statement associated with ibfind device*/
 ibtmo (dts_no, T10s); /* time out 10 sec. */
 ibpad (dts_no, 5); /* primary address = 5 */
 ibsad (dts_no, 0); /* secondary address = 0 */
 ibeos (dts_no, 0); /* ignore eos char on read = 0 */
 ibeot (dts_no, 1); /* send eoi on last byte of write = 1 */
 ibonl (dts_no, 1); /* instrument on line = 1 */

4

 if (ibclr (dts_no) & ERR)
 printf (" ERROR in BUS CLEAR \n"); /* clear gpib bus */
 delay (3.0); /* delay 3 sec. to allow both bus to clear */
 if (ibwrt (dts_no, "*CLS",4)) & ERR)
 {
 printf ("\n***** GPIB CABLE or WAVE DTS ADDRESS ERROR ***** \n");
 return FALSE;
 }

 ibwrt (dts_no, "*CLS; :SYST:HEADOFF; :SYST:LONGOFF; *ESE125; *SRE49",51);
 ibwrt (dts_no, ":ACQ:COUN010; :SYST:WAVPEAK",27);

 }
 return;
 }

ibwrt passes the arguments of the GPIB device address with the ASCII command
string and sizeof the string. Each ASCII command will perform commands that
clear the status register (*CLS), header information is off (:SYST:HEAD OFF), and
the abbreviated truncation rule of 4 characters for alpha mnemonics(:SYST:LONG
OFF) is used throughout this application. The event status (*ESE125) and service
request enable (*SRE49) commands set up masking to obtain status information
during serial polling. The instrument commands (:ACQ:COUN100) set the sample
size to 100 and (:SYST:WAVPEAK) sets the pulse find wave for voh/vol
measurements. The first *CLS exchanges protocol to query status of command
transfer to the DTS instrument and report if any ERR occurred (ERRor is a NI-488
gpib.drv declared variable and has built in error reporting).

Once the function is complete to initialize, invoke header format, setup masking
for status reporting, acquire count, and report error status ; the next task is read
a response.

Identify Function

First we must read a response (ibrd) from the GPIB. A *IDN? command will assure
the GPIB communication of the DTS. IDeNtify query will return a string " WAVE,
DTS2070, 0x.x"; While waiting for the reply, I suggest performing a serial poll on
the status byte register to check that the MAV bit is set high, when ready perform
the ibrd. The Message AVailable status bit indicates that the GPIB has data to
transfer and can be read only after the bit is high. Without the serial poll the data
may not be available and the read would be meaningless.

 void dts_identify() {
 ibwrt (dts_no, "*IDN?",5);
 if (ibsta & ERR) printf (" IBSTA ERROR \n");

int poll_status;
poll_status = 0;
 while (!(poll_status & 0x 10))
 {

 ibrsp(dts_no,&poll_status);
 }
ibrd (dts_no, rdbck,40);
printf (wave idn = %s \n",rdbck);

 return;
 }

Once the proper response is returned from the DTS; the next step is to use
:SYSTEM: MACRO commands to setup the DTS.

5

Setup Function
The :SYST:MAC command is fast, easy-to-use, and maintains an exact sequence
of commands necessary to complete a setup that specify functions, channels,
arming mode, and threshold voltages. The three setups below for functions TPD++,
PW+, TT+ are stored in memory under *SAVe1 and a OPeration Complete
command (*OPC?) queries a response from the DTS to status byte the MAV bit
when ready.

The setup function writes important instructions to the DTS that will assign proper
arming modes with channel information and threshold voltage values to accomplish
a measurement. I recommend maintaining an exact sequence of commands as
structured in the :SYST:MACRO command; in other words always follows a
sequence of function, channel, arming, voltage; especially during the first basic
measurement setup. Later you may want to change arming or count cycle or even
threshold voltages and with a basic setup simple changes are sufficient.

 void dts_setup() {
 ibwrt(dts_no,":SYST:MAC/TPD++/BOTH/AUT/STOP/ /0.200/0.200/", 44);
 ibwrt(dts_no,":SYST:MAC/PW+/ 1 /AUT/STOP/ /0.200/0.200/", 41);
 ibwrt(dts_no,":SYST:MAC/TT+/ 2 /AUT/STOP/20 80/ / /", 36);
 ibwrt(dts_no,"*SAV1; *OPC?", 12);

 while (!(poll_status & 0x 10))
 {

 ibrsp(dts_no,&poll_status);
 }
ibrd(dts_no, opcck, 5);
printf (opc = %d \n", opcck);

return;
}

The save/recall commands stores all 10 functions, channels, voltages by one save
command; therefore in this example the three setups TPD++, PW+, TT+ are all in
memory under *SAV1. The query *OPC?, and serial polling of the status byte register
for a MAV bit high assures the save is complete, and read ibrd response OPC = 1.
Without the serial polling of the status byte, the ibrd could read "0" signifying the
SAV1 was not complete, so wait for the serial poll status then do the read. Table
no.1 summarizes the three setups. Later, the three setups stored in memory can be
recalled by the command *RCL1 in conjunction with the *ACRuire:RUN function
command.

Function Channel Arming Enable Mode Trigger Voltage1 V

PW+ CH 1 Auto Arm Stop User 0.200

TT+ CH 2 Auto Arm Stop 20% - 80% Vol

TPD++ Both Auto Arm Stop User 0.200

Table No. 1 System Macro Command Setups

Measurement Commands
The measurement macro commands are very fast and easy to use. The quick
measure command (:ACQuire:RUN PW+) not only recalls the total setup for
PW+ including channel, voltage, and arming mode parameters; but also
executes a measurement and returns the AVERage and JITTer values.

6

void dts_measpw() {
ibwrt(dts_no,":ACQ:RUNPW+", 11);

 while (!((poll_status & 0x 11) = = & 0x 11))
 {

 ibrsp(dts_no,&poll_status);
 }
ibrd(dts_no, resp, 100);
sscanf (&resp, "%f%f", &average, &jitter);
printf("average = %e \n", average);
printf("jitter = %e \n", jitter);

return;
}

The need for additional commands and polling are eliminated by the (:ACQuire:RUN
PW+) command. The command performs internally by the DTS firmware a setup
recall for PW+ , burst measurement, and return measurement value. The program
need only serial poll the status byte and wait for the MAV ready.

Data Types
A discussion of data types are necessary so the programmer can properly declare
variables for the DTS. All voltage parameters are type real and declared as double.
All burst measurements including AVERage and JITTer are type floating point and
declared as double. All samples are type integer using type modifier long and
declared as long.

Termination Characters
All serial stream data transfers must be null-terminated by a GPIB EOI or the NL
character. The character for a NL (new line) is a ASCII 0A (hex), NULL is a ASCII 00
(hex), and EOI (end or identify) is a hardware line. This signifies when the GPIB
transmission is terminated. Therefore, the parser automatically detects the character
and terminates the data transfer.

Pulse Find
The DTS has pulse find capability to measure the PEAK voltages sine wave or the
voh/vol FLAT square wave on the chan1 and chan2 signals are selected by
command :SYST:WAVPEAK . To initiate a pulse find (:ACQ:LEV) command, the
instrument will measure the signal high level and low level.

 void dts_levtt() {
 ibwrt (dts_no,":SYST:WAVPEAK; :TER?; :ACQ:LEV",30);
 ibwrt (dts_no,":TER?",5);

 while (!(poll_status & 0x 01))
 ibrsp(dts_no,&poll_status);
ibwrt (dts_no, ":CHANSTOP:MAX?", 14);

 while (!(poll_status & 0x 10))
 ibrsp(dts_no,&poll_status);
ibrd(dts_no, vmax_str, 20);

return;
}

This function is necessary in automatically determining the 20%-80% voltage
percentage points for TT+ based on the signal vol/voh in the :ACQ:RUNTT+
application.
The :CHAN STOP:MAX? query command returns voh data. This function is necessary
not only for determining amplitude verification of an output signal vol and voh, but also
overshoot and/or undershoot parameters.

7

System Arming Macro
Be aware that all the examples are in the auto arming mode for auto arm on
stop. The sequence control of startfirst or auto arm start first defines that CH
1(start) will always be measured before CH 2 (stop). If your application needs to
use external arming with arming on pulse count; a fast and easy to use
:SYST:ARM macro command is available. The :SYST:ARM command specifies
trigger source, arming enable mode, channel arm, arm threshold voltages, arm
slope, arm count, and has up to 10 arming arguments.

 ibwrt(dts_no,":SYST:ARM/EXT/STARTFIRST/ARM1/ARM1/ / /POS/ /1/2/", 49);

The :SYST:ARM macro commands are setting up the EXTernal arming mode
with enable sequence in the STARTFIRST mode. The ARM1 input will trigger off
the start arming input treshold voltage (determined by the pulse find) and the
arm1 slope will be POSitive and arm on start count of 1 and stop count of 2.

Program Example

The C++ Functions and commands of the DTS written in this application and
incorporated in the test program are shown in table no. 2.

Test Program #include files

dts_initialize();

dts_identify();

dts_setup();

dts_levtt();

dts_measpw();

Table No. 2 C++ Functions in test program.

The arming enable modes are auto arm on STOP for both the measurement of the
prop delay (TPD++) of channel 1 rising edge at 2.0vdc with respect to channel 2
rising edge at 2.0vdc with x10 probes; and the measurement of pulse width (PW+)
of Channel 1 signal (see table no. 3 for waveform examples). The arming mode
enables the measurement of " AUTO ARM ON STOP" or STOP and is one of four
special DTS arming enable modes.

The arming mode auto arm on stop assures the stop pulse will be measured for
rise time (TT+) at 20% to 80% of vol/voh. The DTS will measure any random
event or signal and with the arming enable mode the user can control which
event is measured first.

CHan1 - Start

CHan2 - Stop

TT+

TPD++
PW+

Arm Stop

 Table No. 3 Waveform examples.

8

Conclusions
The test commands of the DTS written in this application are for a ATE Test system
using UNIX in a C/C++ environment with the NI-488.2M GPIB software driver.

The WAVECREST Digital Time Scope make the fast, accurate one-shot time
interval measurements necessary for automated testing.

This paper will help the Test Engineer organize and structure his test program; so
he can properly accomplish status reporting, serial polling, exchange protocol,
convert measurement data formats, and utilize easy-to-use macros. The need to
measure critical timing parameters on I.C.’s for propagation delays (TPD), pulse
width (PW) duty cycle, and rise times (TT+) with 10pS. accuracy are demonstrated
in the application discussed in this document. With the measurement goals and
budget achieved; the user is able to write software to initialize the DTS via the
GPIB bus, save measurement setups, execute measurements, and obtain critical
device jitter data.

References

Mitchell Waite and Stephen Prata, New C Primer Plus, Second Edition, Sams Publishing, Carmel, IN.; 1993.

National Instruments Corp., NI-488.2 M Software Reference Manual, 1992.

Kerry Newcom, Streaming Data Speeds Up IEEE 488 Bus, Evaluation Engineering, Nokomis, Fl., June,1993.

Herbert Schildt, ANSI C Made Easy, Osborne Mcgraw-Hill, Berkeley,Ca.; 1990.

Anatole Olczak, UNIX System V Quick Reference Guide Release 4, ASP, San Jose, Ca.; 1993.

IEEE-488 Interface Guide, Digital Time Scope DTS2070. Wavecrest Corporation, Edina, Mn.

WAVECREST Corporation WAVECREST Corporation
World Headquarters West Coast Office:
7275 Bush Lake Road 1735 Technology Drive, Suite 400
Edina, MN 55439 San Jose, CA 95110
(612) 831-0030 (408) 436-9000
FAX: (612) 831-4474 FAX: (408) 436-9001
Toll Free: 1-800-733-7128 1-800-821-2272
www.wavecrestcorp.com

200116-01 REV A

	WAVECREST APPLICATIONS NOTE NUMBER 116 rev. 1.1
	PROGRAMMING THE WAVECREST DTS-2070 IN A UNIX - C/C++ ENVIRONMENT
	
	Introduction

	Identify Function

	
	Program Example
	cover116.pdf
	Application Note No. 116

